文章编号: 0258-7025(2004)01-0125-04

7050 航空铝合金结构材料激光冲击 强化处理研究

王声波,范 勇,吴鸿兴,郭大浩,戴宇生

(中国科学技术大学强激光技术研究所, 安徽 合肥 230026)

摘要 用自行研制的激光冲击强化处理(LSP)装置对两种重要航空铝合金结构材料 7050T7451,7050T7452 冲击 强化试验,进行了疲劳寿命对比试验。给出了反映疲劳应力水平与结构件寿命对应关系的 _{σm}-N 曲线。结果表明, 在 67.3 MPa 的加载应力水平下,激光冲击处理后 7050T7451 结构材料的疲劳寿命提高到未经处理的 435%,而 7050T7452 在 81.4 MPa 的应力水平下提高到 518%。并对试件进行了激光冲击处理机理的研究,结果显示试件表 面具有较大的残余压应力和较高的位错密度。

关键词 激光技术;激光冲击强化处理;7050 铝合金;疲劳强度 中图分类号 TG 665;TN 249 文献标识码 A

Research of Strengthening 7050 Aerial Aluminum Alloy Structural Material with Laser Shock Processing

WANG Sheng-bo, FAN Yong, WU Hong-xing, GUO Da-hao, DAI Yu-sheng (Institute of High Power Laser Technology, USTC, Hefei, Anhui 230026, China)

Abstract Strengthening the important aerial aluminum alloy material, 7050T7451, 7050T7452 by laser shock processing (LSP) technique with the home made device. Testing the fatigue life. σ_m -N curves which show the relation of fatigue stress level and fatigue life of material were given, the result showing, after LSP, fatigue life of 7050T7451 increases to 435% of non LSP sample under 67.3 MPa stress level, fatigue life of 7050T7452 increases to 518% of non LSP sample under 81.4 stress level. Also researching the mechanism of LSP on 7050 aerial A-alloy, the result shows the surface of the test piece has biggish residual compressive stress, and biggish internal dislocation density.

Key words laser technique; laser shock processing (LSP); 7050 aluminum alloy material; fatigue strength

1 引 言

随着激光技术的发展,利用激光对材料进行改 性处理从而提高、改善材料本身性能越来越受到重 视^[1,2]。利用激光冲击波对航空材料进行强化处理 就是其中很重要的一个研究领域。

激光冲击强化技术(LSP)是一种新型的材料表 面改性处理技术,它利用高功率脉冲激光与材料相 互作用过程中产生的高压冲击应力波,使冲击后的 材料具有残余压应力和高的位错密度,从而大大提 高材料的表面硬度和抗疲劳寿命^[3~5]。 7050T7451,7050T7452作为两种重要的航空铝合 金结构材料,对其进行激光冲击处理研究以有效提 高其抗疲劳寿命具有非常重要的意义。

我们利用激光冲击处理技术对上述两种材料进 行了强化处理,得到了反映疲劳应力水平与寿命对 应关系的 *σ_m-N* 曲线,明显提高了材料的抗疲劳寿 命,获得了较高的表面残余压应力和显著的位错结 构。

收稿日期:2002-08-12; 收到修改稿日期:2002-11-28

作者简介:王声波(1962—),男,中国科学技术大学强激光技术研究所副教授,主要从事强激光物理、高功率激光技术、激 光与材料**相互有激转活**面研究。E-mail:sbwang@ustc.edu.cn

2 实验装置

实验采用中国科学技术大学强激光技术研究所 研制的激光冲击强化处理装置进行。整个装置由高 功率激光系统,激光电源系统,激光能源系统(储能 电容器系统)和导光臂与激光冲击头系统四个主要 部分组成。整个装置的主要性能指标为:中心波长 为 1054 nm;输出光束发散度为 $\theta \leq 1.7 \text{ mrad};$ 激光 脉冲宽度为 FWHM $\leq 25 \text{ ns};$ 输出稳定度为脉冲能 量起伏 $\leq \pm 4\%$,脉冲功率起伏 $\leq \pm 5\%;$ 激光脉冲能 量与峰值功率为脉冲能量 $\geq 25 \text{ J},$ 峰值功率 $\geq 1 \times$ 10⁹ W;系统自发辐射放大(ASE)能量 $\approx 15 \text{ mJ}.$

装置输出的激光束脉宽为 20 ns 左右,峰值功 率为 GW 量级(~10⁹ W)。整个实验装置由激光系 统、试件和夹具等组成。为了保护试件不受热损伤 并且增强冲击强化的效果,在试件表面覆有黑色涂 层和 K9 玻璃约束层^[6~8],然后进行激光冲击实验。 整个实验系统的光路如图 1 所示。

为了有效测试激光冲击强化对航空铝合金材料 性能的改善,加工了 7050T7451(板材)和 7050T7452(锻件)两种试件。试件采用双联形式 (如图2所示),其中,疲劳孔的孔径为 \$\u03c92.5 mm。

3 实验结果

对这两种试件进行了激光冲击强化处理,并在 不同加载应力水平下对其冲击强化提高抗疲劳寿命 的效果进行测试分析。对疲劳强度的测试用 Instron 1332型材料试验机,实验结果如下。

3.1 7050T7451 试件

7050T7451 试件是航空铝合金板材试件,厚度 为 $\delta = 5 \text{ mm}$,用前述激光系统以 $P = 1.6 \sim 2.0$ GW/cm² 的激光冲击功率密度对其进行双面、各两 次叠加冲击处理。在等幅谱条件下,对试件的疲劳 寿命进行测试,基本测试条件如下: $P_{max} = 13.57$ kN, $P_{min} = 1.36$ kN,f = 15 Hz,得到加载平均应力 水平 σ_m (MPa)与疲劳寿命 N(试件断裂时的循环 数)之间的关系(σ_m -N)如表 1 及图 3 所示。

为有效表现激光冲击强化对材料疲劳寿命的改善,采用 σ_m -N 曲线(平均应力-断裂时循环数), 它反映了疲劳应力水平与寿命之间的对应关系,

图 3 实验结果的 σ_m -N 曲线

Fig. 3 Represent the experiment result with σ_m -N curve

表 1 7050T7451 在不同加载水平下等幅拉-拉疲劳实验结果

Table 1	Pull-pull	experiment	result of	f 7050T7451	under the	e condition o	of constant	equation	stress
---------	-----------	------------	-----------	-------------	-----------	---------------	-------------	----------	--------

$\sigma_m \ / \mathrm{MPa}$	106.6	96.6	81.4	67.3
Fatigue life of unprocessed area N_a (circle numbers)	33533	49867	101210	16370
Fatigue life of processed area N_b (circle numbers)	58567	107267	264950	>699900
N_b/N_a	1.75	2.15	3.22	>4.35

是估算结构件疲劳寿命的基本数据。 σ_m -N曲线在双 对数坐标系 更数据为一条直线(N在 $10^4 \sim 10^6$ 循环 次数范围内),其数学表达式为: $lgN = A + Blg\sigma_m$, 式中 $A \to B$ 都为数据拟合系数,由最小二乘法拟合 得到。_{σm}-N 曲线是判断"无损伤"载荷的依据,也是 等损伤折算的数据依据。

实验结果表明,对 7050T7451 试件,当平均加 载应力值 σ_m 在 106.6~67.3 MPa 之间变化时,经激 光冲击处理后试件疲劳寿命值与未经激光冲击处理 试件疲劳寿命的比值并非一个常数,而是会随着加 载平均应力水平的不同而变化。其中在 67.3 MPa 时经激光冲击处理后试件疲劳寿命提高到未经激光 冲击处理试件疲劳寿命的 435%以上。

3.2 7050T7452 试件

7050T7452 试件是航空铝合金锻件试件,厚度 为 $\delta = 5 \text{ mm}$,用前述激光冲击强化处理系统以 $P = 1.8 \sim 2.0 \text{ GW/cm}^2$ 的激光冲击功率密度对其进行 双面、各两次叠加冲击处理。在等幅谱条件下,对试 件的疲劳寿命进行测试,基本测试条件如下: P_{max} =12.32 kN, $P_{\text{min}} = 1.23 \text{ kN}$,f = 15 Hz,对加载水 平与疲劳寿命之间的关系 (σ_m -N)所取得的实验结 果如表 2 所示。

表 2 7050T7452 在不同加载水平下等幅拉-拉疲劳实验结果

Table 2	Pull-pull experiment	result of 7050T7452	under the condition o	f constant equation stress
---------	----------------------	---------------------	-----------------------	----------------------------

σ_m /MPa	96.9	81.4
Fatigue life of unprocessed area N_a (circle numbers)	40600	86400
Fatigue life of processed area N_b (circle numbers)	113500	447800
N_b/N_a	2.80	5.18

实验结果表明,对 7050T7452 试件,当平均加 载应力值 σ_m 在 96.9~81.4 MPa 之间变化时,经激 光冲击处理后试件疲劳寿命值与未经激光冲击处理 试件疲劳寿命的比值与 7050T7451 类似,都随加载 应力水平的不同而变化,其中在 81.4 MPa 时经激 光冲击处理后试件疲劳寿命提高到未经激光冲击处 理试件疲劳寿命的 518%以上。

4 抗疲劳寿命机理的研究

为更好地研究激光冲击强化处理对航空铝合金 材料性能的改善,揭示激光冲击处理提高材料抗疲 劳寿命的机理,对经过激光冲击强化处理后的 7050T7451,7050T7452 试件冲击区的残余压应力 和表层组织结构进行了研究。

4.1 残余压应力

经过激光冲击处理后材料表面的残余压应力对 材料的疲劳性能的提高具有极大意义,因为在循环 负载下,其叠加在外部的正值应力起到抵消作用,从 而减小了有效局部负载。

对经过前述参数的激光冲击强化处理后试件的 残余压应力进行研究。测试采用美国的 AST X-ray stress analysis 进行。获得如下结果:对未经激光冲 击强化处理的材料基体 7050T7451 和 7050T7452 的表面残余压应力分别为一8.9 MPa 和 6.5 MPa; 经过双面各两次叠加激光冲击处理的 7050T7451 和 7050T7452 表面残余压应力分别达到 - 226.9 MPa 和 - 237. 数据Pa,都较未经激光冲击处理有极 为明显的提高。

4.2 表层组织结构

为进一步研究经过激光冲击强化处理后这两种 材料显微结构的改变,对 7050T7451,7050T7452 进 行了位错密度的测量研究。位错密度的测量是采用 透射式扫描电镜在 50000 倍放大下对位错结构进行 观察测量,结果如图 4 和图 5 所示。

图 4 对试件 7050T7451 的测试结果 (a) T7451 基体未冲击;(b) T7451 激光两次叠加冲击 Fig. 4 Experiment result of 7050T7451 (a) T7451 parent material; (b) T7451 processed by twice LSP

图 5 对试件 7050T7452 的测试结果 (a) T7452 基体未冲击;(b) T7452 激光两次叠加冲击 Fig. 5 Experiment result of 7050T7452 (a) T7452 parent material; (b) T7452 processed by twice LSP

测量结果表明,7050T7451,7050T7452 两种试 件经激光冲击处理后,冲击区的位错密度与未经激 光冲击处理区的位错密度相比,都有了极为显著的 提高。

通过残余压应力和表层组织结构的研究结果可 见,通过激光冲击处理,材料的表面残余压应力与位 错密度均得到极为显著的提高。这意味着通过激光 冲击处理,材料的内部显微结构得到了改善,与我们 前述的疲劳寿命研究结果相吻合,证明了激光冲击 处理使这种重要航空材料的疲劳寿命有很大的提 高。

5 结 论

利用激光冲击强化处理技术可以非常明显地增加 7050 航空铝合金结构材料的位错密度,并使试件 表面获得较大的残余压应力,从而显著提高材料的 抗疲劳寿命等性能。

参考文献

- P. Peyre, R. Fabbro. Laser shock processing: a review of the physics and applications [J]. Opt. and Quantum Electron., 1995, 27(12):1213~1229
- 2 Guo Dahao, Wu Hongxing, Wang Shengbo et al.. Study of mechanism of strengthening material with laser shock processing [J]. Science in China, Series E, 1999, 29(3):222~226
 郭大浩,吴鸿兴,王声波等.激光冲击强化机理研究[J]. 中国科学(E辑),1999, 29(3):222~226
- 3 B. P. Fairand, A. H. Clauer. Laser generation of highamplitude stress waves in materials [J]. J. Appl. Phys., 1979, 50(3):1497~1502
- 4 Zhang Yongkang, Zhang Suyi, Tang Yaxing *et al.*. Study of anti-fatigue fracture laser shock processing technology [J]. *Science in China*, *Series E*, 1999, **27**(1):28~34 张永康,张淑仪,唐亚新 等. 抗疲劳断裂的激光冲击强化技术研 究[1],中国科学(E辑), 1997, **27**(1):28~34
- 5 Suo Liu, Fatigue Property of Metal Materials and Shot Peening Technology [M]. Beijing, National Defence Industry Press, 1977
 刘 锁 编著. 金属材料的疲劳性能与喷丸强化工艺「M]. 北京:

刘 锁 编者. 金属材料的波劳性能与喷丸强化上艺LMJ. 北京: 国防工业出版社,1977

- Duan Zhiyong, Wang Shengbo, Wu Hongxing *et al.*. Effects of confining material and surface properties of target on laser-induced stress waves [J]. *Laser Journal*, 2000, 21(2):19~21 段志勇,王声波,吴鸿兴等. 约束层材料及靶材料表面特征对激光冲击波的影响[J]. 激光杂志, 2000, 21(2):19~21
- 7 Li Zhiyong, Zhu Wenhui, Zhou Guangquan et al.. Experimental study on the influence of PMMA confinement to laser-induced shock waves [J]. Chinese J. Lasers, 1997, A24(2):118~122 李志勇,朱文辉,周光泉等. 实验研究有机玻璃约束层对激光冲 击波的影响[J]. 中国激光, 1997, A24(2):118~122
- 3 Zhou Jianzhong, Zhou Ming, Xiao Aimin *et al.*. Study of the effects of overlay thickness and flexibility on laser shock processing [J]. *Applied Laser*, 2002, 22(1):7~9

周建中,周 明,肖爱民 等. 约束层的厚度和柔性对激光冲击强 化效果的影响[J]. 应用激光,2002,**22**(1):7~9